Abstract

This memo specifies two elliptic curves over prime fields that offer a high level of practical security in cryptographic applications, including Transport Layer Security (TLS). These curves are intended to operate at the ~128-bit and ~224-bit security level, respectively, and are generated deterministically based on a list of required properties.

Status of This Memo

This document is not an Internet Standards Track specification; it is published for informational purposes.

This document is a product of the Internet Research Task Force (IRTF). The IRTF publishes the results of Internet-related research and development activities. These results might not be suitable for deployment. This RFC represents the consensus of the Crypto Forum Research Group of the Internet Research Task Force (IRTF). Documents approved for publication by the IRSG are not a candidate for any level of Internet Standard; see Section 2 of RFC 5741.

Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc7748.

Copyright Notice

Copyright (c) 2016 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document.

Table of Contents
1. Introduction .. 2
2. Requirements Language ... 3
3. Notation ... 3
4. Recommended Curves ... 4
 4.1. Curve25519 .. 4
 4.2. Curve448 .. 5
5. The X25519 and X448 Functions 7
 5.1. Side-Channel Considerations 10
 5.2. Test Vectors ... 11
6. Diffie-Hellman .. 14
 6.1. Curve25519 .. 14
 6.2. Curve448 .. 15
7. Security Considerations .. 15
8. References .. 16
 8.1. Normative References 16
 8.2. Informative References 17
Appendix A. Deterministic Generation 19
 A.1. p = 1 mod 4 .. 20
 A.2. p = 3 mod 4 .. 21
 A.3. Base Points ... 21
Acknowledgements ... 22
Authors’ Addresses .. 22

1. Introduction

Since the initial standardization of Elliptic Curve Cryptography (ECC [RFC6090]) in [SEC1], there has been significant progress related to both efficiency and security of curves and implementations. Notable examples are algorithms protected against certain side-channel attacks, various "special" prime shapes that allow faster modular arithmetic, and a larger set of curve models from which to choose. There is also concern in the community regarding the generation and potential weaknesses of the curves defined by NIST [NIST].

This memo specifies two elliptic curves ("curve25519" and "curve448") that lend themselves to constant-time implementation and an exception-free scalar multiplication that is resistant to a wide range of side-channel attacks, including timing and cache attacks. They are Montgomery curves (where \(v^2 = u^3 + A*u^2 + u\)) and thus have birationally equivalent Edwards versions. Edwards curves support the fastest (currently known) complete formulas for the elliptic-curve group operations, specifically the Edwards curve \(x^2 + y^2 = 1 + d*x^2*y^2\) for primes \(p\) when \(p = 3\) mod 4, and the twisted Edwards curve \(-x^2 + y^2 = 1 + d*x^2*y^2\) when \(p = 1\) mod 4. The maps to/from the Montgomery curves to their (twisted) Edwards equivalents are also given.
This memo also specifies how these curves can be used with the Diffie-Hellman protocol for key agreement.

2. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].

3. Notation

Throughout this document, the following notation is used:

- **p**: Denotes the prime number defining the underlying field.
- **GF(p)**: The finite field with p elements.
- **A**: An element in the finite field GF(p), not equal to -2 or 2.
- **d**: A non-zero element in the finite field GF(p), not equal to 1, in the case of an Edwards curve, or not equal to -1, in the case of a twisted Edwards curve.
- **order**: The order of the prime-order subgroup.
- **P**: A generator point defined over GF(p) of prime order.
- **U(P)**: The u-coordinate of the elliptic curve point P on a Montgomery curve.
- **V(P)**: The v-coordinate of the elliptic curve point P on a Montgomery curve.
- **X(P)**: The x-coordinate of the elliptic curve point P on a (twisted) Edwards curve.
- **Y(P)**: The y-coordinate of the elliptic curve point P on a (twisted) Edwards curve.
- **u, v**: Coordinates on a Montgomery curve.
- **x, y**: Coordinates on a (twisted) Edwards curve.
4. Recommended Curves

4.1. Curve25519

For the 128-bit security level, the prime $2^{255} - 19$ is recommended for performance on a wide range of architectures. Few primes of the form 2^c-s with s small exist between 2^{250} and 2^{521}, and other choices of coefficient are not as competitive in performance. This prime is congruent to 1 mod 4, and the derivation procedure in Appendix A results in the following Montgomery curve $v^2 = u^3 + A*u^2 + u$, called "curve25519":

- $p = 2^{255} - 19$
- $A = 486662$
- order $2^{252} + 0x14def9dea2f79cd65812631a5cf5d3ed$
- cofactor 8
- $U(P) = V(P) = 9$
- $v = 14781619447589544791020593568409986887264606134616475288964881837755586237401$
- The base point is $u = 9$, $v = 14781619447589544791020593568409986887264606134616475288964881837755586237401$

This curve is birationally equivalent to a twisted Edwards curve $-x^2 + y^2 = 1 + d*x^2*y^2$, called "edwards25519", where:

- $p = 2^{255} - 19$
- $d = 3709570593466943934313808350875456518954211387984321901638878553308594028355$
- order $2^{252} + 0x14def9dea2f79cd65812631a5cf5d3ed$
- cofactor 8
- $X(P) = 151122131349535400772501151409588531511454012693041857206046113283949847762202$
- $Y(P) = 46316835694926478169428394003475163141307993866256225615783033603165251855960$
The birational maps are:

\[(u, v) = ((1+y)/(1-y), \sqrt{-486664} \cdot u/x)\]
\[(x, y) = (\sqrt{-486664} \cdot u/v, (u-1)/(u+1))\]

The Montgomery curve defined here is equal to the one defined in [curve25519], and the equivalent twisted Edwards curve is equal to the one defined in [ed25519].

4.2. Curve448

For the ~224-bit security level, the prime \(2^{448} - 2^{224} - 1\) is recommended for performance on a wide range of architectures. This prime is congruent to 3 mod 4, and the derivation procedure in Appendix A results in the following Montgomery curve, called "curve448":

\[p = 2^{448} - 2^{224} - 1\]
\[A = 156326\]

\[\text{order } 2^{446} - 0x8335dc163bb124b65129c96fde933d8d723a70aadc873d6d54a7bb0d\]

\[\text{cofactor } 4\]

\[\text{U(P)} = 5\]

\[\text{V(P)} = 3552939226785568175264127502063783334808976399387714271831880898\]
\[435169088786967410002932673765864550910142774147268105838985595290\]
\[606362\]

This curve is birationally equivalent to the Edwards curve \(x^2 + y^2 = 1 + dx^2 y^2\) where:

\[d = 611975850744529176160423220965553317543219696871016626328968936415\]
\[087860042636474891785599283666020414768678979989378147065462815545\]
\[017\]

\[\text{order } 2^{446} - 0x8335dc163bb124b65129c96fde933d8d723a70aadc873d6d54a7bb0d\]

\[\text{cofactor } 4\]
The birational maps are:

\[
(u, v) = (((y-1)/(y+1), \sqrt{(156324)*u/x})
\]

\[
(x, y) = (sqrt(156324)*u/v, (1+u)/(1-u))
\]

Both of those curves are also 4-isogenous to the following Edwards curve \(x^2 + y^2 = 1 + d*x^2*y^2\), called "edwards448", where:

\[
p = 2^{448} - 2^{224} - 1
\]

\[
d = -39081
\]

\[
order = 2^{446} - 0x8335dc163bb124b65129c96fde933d8d723a70aadcc873d6d54a7bb0d
\]

\[
cofactor = 4
\]

The 4-isogeny maps between the Montgomery curve and this Edwards curve are:

\[
(u, v) = (y^2/x^2, (2 - x^2 - y^2)*y/x^3)
\]

\[
(x, y) = (4*v*(u^2 - 1)/(u^4 - 2*u^2 + 4*v^2 + 1),
- (u^5 - 2*u^3 - 4*u*v^2 + u) /
 (u^5 - 2*u^2*v^2 - 2*u^3 - 2*v^2 + u))
\]

The curve edwards448 defined here is also called "Goldilocks" and is equal to the one defined in [goldilocks].
The X25519 and X448 Functions

The "X25519" and "X448" functions perform scalar multiplication on the Montgomery form of the above curves. (This is used when implementing Diffie-Hellman.) The functions take a scalar and a u-coordinate as inputs and produce a u-coordinate as output. Although the functions work internally with integers, the inputs and outputs are 32-byte strings (for X25519) or 56-byte strings (for X448) and this specification defines their encoding.

The u-coordinates are elements of the underlying field GF(2^255 - 19) or GF(2^448 - 2^224 - 1) and are encoded as an array of bytes, u, in little-endian order such that u[0] + 256*u[1] + 256^2*u[2] + ... + 256^(n-1)*u[n-1] is congruent to the value modulo p and u[n-1] is minimal. When receiving such an array, implementations of X25519 (but not X448) MUST mask the most significant bit in the final byte. This is done to preserve compatibility with point formats that reserve the sign bit for use in other protocols and to increase resistance to implementation fingerprinting.

Implementations MUST accept non-canonical values and process them as if they had been reduced modulo the field prime. The non-canonical values are 2^255 - 19 through 2^255 - 1 for X25519 and 2^448 - 2^224 - 1 through 2^448 - 1 for X448.

The following functions implement this in Python, although the Python code is not intended to be performant nor side-channel free. Here, the "bits" parameter should be set to 255 for X25519 and 448 for X448:

```python
<CODE BEGINS>
def decodeLittleEndian(b, bits):
    return sum([b[i] << 8*i for i in range((bits+7)/8)])

def decodeUCoordinate(u, bits):
    u_list = [ord(b) for b in u]
    # Ignore any unused bits.
    if bits % 8:
        u_list[-1] &= (1<<(bits%8))-1
    return decodeLittleEndian(u_list, bits)

def encodeUCoordinate(u, bits):
    u = u % p
    return ''.join([chr((u >> 8*i) & 0xff) for i in range((bits+7)/8)])
<CODE ENDS>
```
Scalars are assumed to be randomly generated bytes. For X25519, in order to decode 32 random bytes as an integer scalar, set the three least significant bits of the first byte and the most significant bit of the last to zero, set the second most significant bit of the last byte to 1 and, finally, decode as little-endian. This means that the resulting integer is of the form 2^{254} plus eight times a value between 0 and $2^{251} - 1$ (inclusive). Likewise, for X448, set the two least significant bits of the first byte to 0, and the most significant bit of the last byte to 1. This means that the resulting integer is of the form 2^{447} plus four times a value between 0 and $2^{445} - 1$ (inclusive).

```python
<CODE BEGINS>
def decodeScalar25519(k):
    k_list = [ord(b) for b in k]
    k_list[0] &= 248
    k_list[31] &= 127
    k_list[31] |= 64
    return decodeLittleEndian(k_list, 255)

def decodeScalar448(k):
    k_list = [ord(b) for b in k]
    k_list[0] &= 252
    k_list[55] |= 128
    return decodeLittleEndian(k_list, 448)
<CODE ENDS>
```

To implement the X25519(k, u) and X448(k, u) functions (where k is the scalar and u is the u-coordinate), first decode k and u and then perform the following procedure, which is taken from [curve25519] and based on formulas from [montgomery]. All calculations are performed in GF(p), i.e., they are performed modulo p. The constant a_{24} is $(486662 - 2) / 4 = 121665$ for curve25519/X25519 and $(156326 - 2) / 4 = 39081$ for curve448/X448.
\[x_1 = u\]
\[x_2 = 1\]
\[z_2 = 0\]
\[x_3 = u\]
\[z_3 = 1\]
\[\text{swap} = 0\]

For \(t = \text{bits-1} \text{ down to 0:}\)
\[k_t = (k >> t) \& 1\]
\[\text{swap} ^= k_t\]
// Conditional swap; see text below.
\[(x_2, x_3) = \text{cswap}(\text{swap}, x_2, x_3)\]
\[(z_2, z_3) = \text{cswap}(\text{swap}, z_2, z_3)\]
\[\text{swap} = k_t\]

\[A = x_2 + z_2\]
\[AA = A^2\]
\[B = x_2 - z_2\]
\[BB = B^2\]
\[E = AA - BB\]
\[C = x_3 + z_3\]
\[D = x_3 - z_3\]
\[DA = D \times A\]
\[CB = C \times B\]
\[x_3 = (DA + CB)^2\]
\[z_3 = x_1 \times (DA - CB)^2\]
\[x_2 = AA \times BB\]
\[z_2 = E \times (AA + a24 \times E)\]
// Conditional swap; see text below.
\[(x_2, x_3) = \text{cswap}(\text{swap}, x_2, x_3)\]
\[(z_2, z_3) = \text{cswap}(\text{swap}, z_2, z_3)\]
Return \(x_2 \times (z_2^{(p - 2)})\)

(Note that these formulas are slightly different from Montgomery’s original paper. Implementations are free to use any correct formulas.)

Finally, encode the resulting value as 32 or 56 bytes in little-endian order. For X25519, the unused, most significant bit MUST be zero.)
The cswap function SHOULD be implemented in constant time (i.e., independent of the swap argument). For example, this can be done as follows:

cswap(swap, x_2, x_3):
 dummy = mask(swap) AND (x_2 XOR x_3)
 x_2 = x_2 XOR dummy
 x_3 = x_3 XOR dummy
 Return (x_2, x_3)

Where mask(swap) is the all-1 or all-0 word of the same length as x_2 and x_3, computed, e.g., as mask(swap) = 0 - swap.

5.1. Side-Channel Considerations

X25519 and X448 are designed so that fast, constant-time implementations are easier to produce. The procedure above ensures that the same sequence of field operations is performed for all values of the secret key, thus eliminating a common source of side-channel leakage. However, this alone does not prevent all side-channels by itself. It is important that the pattern of memory accesses and jumps not depend on the values of any of the bits of k. It is also important that the arithmetic used not leak information about the integers modulo p, for example by having b*c be distinguishable from c*c. On some architectures, even primitive machine instructions, such as single-word division, can have variable timing based on their inputs.

Side-channel attacks are an active research area that still sees significant, new results. Implementors are advised to follow this research closely.
5.2. Test Vectors

Two types of tests are provided. The first is a pair of test vectors for each function that consist of expected outputs for the given inputs. The inputs are generally given as 64 or 112 hexadecimal digits that need to be decoded as 32 or 56 binary bytes before processing.

X25519:

Input scalar:
 a546e36bf0527c9d3b16154b82465eddd2144c0ac1fc5a18506a2244ba449ac4
Input scalar as a number (base 10):
 31029842492115040904895560451863089656
 472772604678260265531221036453811406496
Input u-coordinate:
 e6db6867583030db3594c1a424b15f7c726624ec26b3353b10a903a6d0ab1c4c
Input u-coordinate as a number (base 10):
 34426434033919594451155107781188821651
 316167215306631574996226621102155684838
Output u-coordinate:
 c3da55379de9c6908e94ea4df28d084f32eccf03491c71f754b4075577a28552

Input scalar:
 4b66e9d4d1b4673c5ad22691957d6af5c11b6421e0ea01d42ca4169e7918ba0d
Input scalar as a number (base 10):
 35156891815674817266734212754503633747
 128614016119564763269015315466259359304
Input u-coordinate:
 e5210f12786811d3f4b7959d0538ae2c31dabe7106fc03c3efc4cd549c715a493
Input u-coordinate as a number (base 10):
 88838573511839298940907593866106493194
 17338800022198945255395922347792736741
Output u-coordinate:
 95cbde9476e8907d7aade45cb4b873f88b595a68799fa152e6f8f7647aac7957
X448:

Input scalar:
3d262dfdd9e88495266feai9a34d28882acef045104d0daae121
700a7779e842f8cd78fbbf44943eba368f54b29259a4f1c600ad3

Input scalar as a number (base 10):
5991891753738964027837560164523256157230856
085062129926891459468622403380588640249457727
68386942192144300405221642549886377526240828

Input u-coordinate:
06fca640fa3a487bfda5f6cf2d5263f8aad8334cbo04737f020f08f9
814c031dddbdc38c19c6da2583fa5429db94ada18aa7af8ef8a086

Input u-coordinate as a number (base 10):
3822391081410730116229961234899337020016365
24057132514834655922438025162094455820962249
142971339584360034337310079791515452463053830

Output u-coordinate:
ce3e4ff95a60dc697da1dbd85e6afbdf79b50a2412d7546d5f239f
e14fbaadea44566a0b7799d9823961111e21766282f73dd96b6f

Input scalar:
203d494428b8399352665ddca42f9de8f6f60908e0d461cb021f8c5
38345dd77c3e4806e25f46d3315c44e0a5b437128dd2c8d5be3095f

Input scalar as a number (base 10):
63325433590697059279725948153486237238252555
252028961056404001322122152890562527156973881
9689343114003455682039294096392554199457104

Input u-coordinate:
0fbbcc2ff993cd56d330b0b79e55d4c1af8f5dbb52f8e9a1e9b6201b
165d015894e56c4d3570becf2fe05e28a78b91cdfebe71ce8d157db

Input u-coordinate as a number (base 10):
62276179755832544462922068431234180649590390
024811299761625153767228042600197997696167956
13477074499669026763415942799983234016678063

Output u-coordinate:
884b02576239ff7a2ff63b2db6a9ff37047ac13568e1e30fe63ca7
ad1b3e3a5700df34321d62077e63633c575c1c954514e99da7c179d
The second type of test vector consists of the result of calling the function in question a specified number of times. Initially, set \(k \) and \(u \) to be the following values:

For X25519:

\[
\begin{align*}
0900 \\
\end{align*}
\]

For X448:

\[
\begin{align*}
0500 \\
00 \\
\end{align*}
\]

For each iteration, set \(k \) to be the result of calling the function and \(u \) to be the old value of \(k \). The final result is the value left in \(k \).

X25519:

After one iteration:

\[
422c8e7a6227d7bca1350b3e2bb7279f7897b87bb6854b783c60e80311ae3079 \\
\]

After 1,000 iterations:

\[
684cf59ba83309552800ef566f2f4d3c1c3887c49360e3875f2eb94d99532c51 \\
\]

After 1,000,000 iterations:

\[
7c3911e0ab2586fd864497297e575e6f3bc601c0883c30df5f4dd24f665424 \\
\]

X448:

After one iteration:

\[
3f482c8af9f19b01e6c46ee9711d9dc14fd4bf67af30765c2ae2b846a \\
4d23a8c60db89708239492caf350b51f833868b9bc2b3bca9cf4113 \\
\]

After 1,000 iterations:

\[
aa3b4749d55b9daf1e5b00288826c467274ce3ebdd5c17b975e09d4 \\
af6c67cf10d087202db88286e2b79fcee3ae353ef54faa26e219f38 \\
\]

After 1,000,000 iterations:

\[
077f453681caca3693198420bbe515caef002472519b3e67661a7e89 \\
cab94695c8f4bdc66e61b9b9c946da8d524de3d69bd9d9d66b997e37 \\
\]
6. Diffie-Hellman

6.1. Curve25519

The X25519 function can be used in an Elliptic Curve Diffie-Hellman (ECDH) protocol as follows:

Alice generates 32 random bytes in a[0] to a[31] and transmits $K_A = X25519(a, 9)$ to Bob, where 9 is the u-coordinate of the base point and is encoded as a byte with value 9, followed by 31 zero bytes.

Bob similarly generates 32 random bytes in b[0] to b[31], computes $K_B = X25519(b, 9)$, and transmits it to Alice.

Using their generated values and the received input, Alice computes $X25519(a, K_B)$ and Bob computes $X25519(b, K_A)$.

Both now share $K = X25519(a, X25519(b, 9)) = X25519(b, X25519(a, 9))$ as a shared secret. Both MAY check, without leaking extra information about the value of K, whether K is the all-zero value and abort if so (see below). Alice and Bob can then use a key-derivation function that includes K, K_A, and K_B to derive a symmetric key.

The check for the all-zero value results from the fact that the X25519 function produces that value if it operates on an input corresponding to a point with small order, where the order divides the cofactor of the curve (see Section 7). The check may be performed by ORing all the bytes together and checking whether the result is zero, as this eliminates standard side-channels in software implementations.

Test vector:

Alice's private key, a:
77076d0a7318a57d3c16c17251b26645df4c2f87ebc0992ab177fba51db92c2a
Alice's public key, $X25519(a, 9)$:
8520f0098930a754748b7ddcb43ef75a0dbf3a0d26381af4eba4a98eaa9b4e6a
Bob's private key, b:
5db087e624a8a4b79e17fbff83800ee66f3bb1292618b6fd1c2f8b27ff8e0eb
Bob's public key, $X25519(b, 9)$:
de9ed7d7b7dcb4d35b61c2eae435373f8343c85b78674dadfc7e146f882b4f
Their shared secret, K:
4a5d95ba4ce2de1728e3bf480350f25e07e21c947d19e3376f09b3c1e161742
6.2. Curve448

The X448 function can be used in an ECDH protocol very much like the X25519 function.

If X448 is to be used, the only differences are that Alice and Bob generate 56 random bytes (not 32) and calculate $K_A = \text{X448}(a, 5)$ or $K_B = \text{X448}(b, 5)$, where 5 is the u-coordinate of the base point and is encoded as a byte with value 5, followed by 55 zero bytes.

As with X25519, both sides MAY check, without leaking extra information about the value of K, whether the resulting shared K is the all-zero value and abort if so.

Test vector:

Alice’s private key, a:
9a8f4925d1519f5775cf46b04b5800d4ee9ee8bae8bc5565d498c28d9c9baf7574a9419744897391006382a6f127ab1d9ac2d8c0a598726b

Alice’s public key, X448(a, 5):
9b08f7cc31b7e3e67d22d5aea121074a273bd2b83de09c63faa73d2c22c5d9bbc836647241d953d40c5b12da8120d53177f80e532c41fa0

Bob’s private key, b:
1c306a7ac2a0e2e0990b294470cba339e6453772b075811d8fad0d1d6927c120bb5ee8972b0d3e21374c9c921b09d1b0366f10b65173992d

Bob’s public key, X448(b, 5):
3eb7a829b0cd205f5bcfc0b599b6feccf6da4627107bdb0d4f345b43027db972fc3e34fb4232a13ca706dcb57aee3dae07bd1c67bf33609

Their shared secret, K:
07fff4181ac6cc95e1c16a94a0f74d12da232ce40a77552281d282bb60c0b56fd2464c335543936521c24403085d59a449a5037514a879d

7. Security Considerations

The security level (i.e., the number of "operations" needed for a brute-force attack on a primitive) of curve25519 is slightly under the standard 128-bit level. This is acceptable because the standard security levels are primarily driven by much simpler, symmetric primitives where the security level naturally falls on a power of two. For asymmetric primitives, rigidly adhering to a power-of-two security level would require compromises in other parts of the design, which we reject. Additionally, comparing security levels between types of primitives can be misleading under common threat models where multiple targets can be attacked concurrently [bruteforce].
The 224-bit security level of curve448 is a trade-off between performance and paranoia. Large quantum computers, if ever created, will break both curve25519 and curve448, and reasonable projections of the abilities of classical computers conclude that curve25519 is perfectly safe. However, some designs have relaxed performance requirements and wish to hedge against some amount of analytical advance against elliptic curves and thus curve448 is also provided.

Protocol designers using Diffie-Hellman over the curves defined in this document must not assume "contributory behaviour". Specially, contributory behaviour means that both parties’ private keys contribute to the resulting shared key. Since curve25519 and curve448 have cofactors of 8 and 4 (respectively), an input point of small order will eliminate any contribution from the other party’s private key. This situation can be detected by checking for the all-zero output, which implementations MAY do, as specified in Section 6. However, a large number of existing implementations do not do this.

Designers using these curves should be aware that for each public key, there are several publicly computable public keys that are equivalent to it, i.e., they produce the same shared secrets. Thus using a public key as an identifier and knowledge of a shared secret as proof of ownership (without including the public keys in the key derivation) might lead to subtle vulnerabilities.

Designers should also be aware that implementations of these curves might not use the Montgomery ladder as specified in this document, but could use generic, elliptic-curve libraries instead. These implementations could reject points on the twist and could reject non-minimal field elements. While not recommended, such implementations will interoperate with the Montgomery ladder specified here but may be trivially distinguishable from it. For example, sending a non-canonical value or a point on the twist may cause such implementations to produce an observable error while an implementation that follows the design in this text would successfully produce a shared key.

8. References

8.1. Normative References

8.2. Informative References

[brainpool]
ECC Brainpool, "ECC Brainpool Standard Curves and Curve Generation", October 2005,

[bruteforce]
Bernstein, D., "Understanding brute force", April 2005,

[curve25519]
Bernstein, D., "Curve25519: new Diffie-Hellman speed records", 2006,

[ed25519]
Bernstein, D., Duif, N., Lange, T., Schwabe, P., and B. Yang, "High-Speed High-Security Signatures", 2011,

[goldilocks]
Hamburg, M., "Ed448-Goldilocks, a new elliptic curve", 2015,

[montgomery]
Montgomery, P., "Speeding the Pollard and Elliptic Curve Methods of Factorization", January 1987,

[NIST]
National Institute of Standards, "Recommended Elliptic Curves for Federal Government Use", July 1999,

[reducing]
Menezes, A., Okamoto, T., and S. Vanstone, "Reducing elliptic curve logarithms to logarithms in a finite field",
DOI 10.1109/18.259647, 1993,

[RFC6090]
McGrew, D., Igoe, K., and M. Salter, "Fundamental Elliptic Curve Cryptography Algorithms", RFC 6090,
DOI 10.17487/RFC6090, February 2011,
curves for elliptic-curve cryptography", Oct 2013,
<http://safecurves.cr.yp.to/>.

[satoh] Satoh, T. and K. Araki, "Fermat quotients and the
polynomial time discrete log algorithm for anomalous

[semaev] Semaev, I., "Evaluation of discrete logarithms on some

[smart] Smart, N., "The Discrete Logarithm Problem on Elliptic
Curves of Trace One", 1999,
Appendix A. Deterministic Generation

This section specifies the procedure that was used to generate the above curves; specifically, it defines how to generate the parameter A of the Montgomery curve $y^2 = x^3 + A*x^2 + x$. This procedure is intended to be as objective as can reasonably be achieved so that it’s clear that no untoward considerations influenced the choice of curve. The input to this process is p, the prime that defines the underlying field. The size of p determines the amount of work needed to compute a discrete logarithm in the elliptic curve group, and choosing a precise p depends on many implementation concerns. The performance of the curve will be dominated by operations in $\text{GF}(p)$, so carefully choosing a value that allows for easy reductions on the intended architecture is critical. This document does not attempt to articulate all these considerations.

The value $(A-2)/4$ is used in several of the elliptic curve point arithmetic formulas. For simplicity and performance reasons, it is beneficial to make this constant small, i.e., to choose A so that $(A-2)$ is a small integer that is divisible by four.

For each curve at a specific security level:

1. The trace of Frobenius MUST NOT be in $\{0, 1\}$ in order to rule out the attacks described in [smart], [satoh], and [semaev], as in [brainpool] and [safecurves].

2. MOV Degree [reducing]: the embedding degree MUST be greater than $(\text{order} - 1) / 100$, as in [brainpool] and [safecurves].

3. CM Discriminant: discriminant D MUST be greater than 2^{100}, as in [safecurves].
A.1. $p = 1 \mod 4$

For primes congruent to 1 mod 4, the minimal cofactors of the curve and its twist are either {4, 8} or {8, 4}. We choose a curve with the latter cofactors so that any algorithms that take the cofactor into account don’t have to worry about checking for points on the twist, because the twist cofactor will be the smaller of the two.

To generate the Montgomery curve, we find the minimal, positive A value such that $A > 2$ and $(A-2)$ is divisible by four and where the cofactors are as desired. The find1Mod4 function in the following Sage script returns this value given p:

```python
def findCurve(prime, curveCofactor, twistCofactor):
    F = GF(prime)
    for A in xrange(3, int(1e9)):
        if (A-2) % 4 != 0:
            continue
        try:
            E = EllipticCurve(F, [0, A, 0, 1, 0])
        except:
            continue
        groupOrder = E.order()
        twistOrder = 2*(prime+1)-groupOrder
        if (groupOrder % curveCofactor == 0 and
            is_prime(groupOrder // curveCofactor) and
            twistOrder % twistCofactor == 0 and
            is_prime(twistOrder // twistCofactor)):
            return A

def find1Mod4(prime):
    assert((prime % 4) == 1)
    return findCurve(prime, 8, 4)
```

Generating a curve where $p = 1 \mod 4$
A.2. $p = 3 \mod 4$

For a prime congruent to $3 \mod 4$, both the curve and twist cofactors can be 4, and this is minimal. Thus, we choose the curve with these cofactors and minimal, positive A such that $A > 2$ and $(A-2)$ is divisible by four. The find3Mod4 function in the following Sage script returns this value given p:

```python
def find3Mod4(prime):
    assert((prime % 4) == 3)
    return findCurve(prime, 4, 4)
```

Generating a curve where $p = 3 \mod 4$

A.3. Base Points

The base point for a curve is the point with minimal, positive u value that is in the correct subgroup. The findBasepoint function in the following Sage script returns this value given p and A:

```python
def findBasepoint(prime, A):
    F = GF(prime)
    E = EllipticCurve(F, [0, A, 0, 1, 0])
    for uInt in range(1, 1e3):
        u = F(uInt)
        v2 = u^3 + A*u^2 + u
        if not v2.is_square():
            continue
        v = v2.sqrt()
        point = E(u, v)
        pointOrder = point.order()
        if pointOrder > 8 and pointOrder.is_prime():
            return point
```

Generating the base point
Acknowledgements

This document is the result of a combination of draft-black-rpgecc-01 and draft-turner-thecurve25519function-01. The following authors of those documents wrote much of the text and figures but are not listed as authors on this document: Benjamin Black, Joppe W. Bos, Craig Costello, Patrick Longa, Michael Naehrig, Watson Ladd, and Rich Salz.

The authors would also like to thank Tanja Lange, Rene Struik, Rich Salz, Ilari Liusvaara, Deirdre Connolly, Simon Josefsson, Stephen Farrell, Georg Nestmann, Trevor Perrin, and John Mattsson for their reviews and contributions.

The X25519 function was developed by Daniel J. Bernstein in [curve25519].

Authors’ Addresses

Adam Langley
Google
345 Spear Street
San Francisco, CA 94105
United States

Email: agl@google.com

Mike Hamburg
Rambus Cryptography Research
425 Market Street, 11th Floor
San Francisco, CA 94105
United States

Email: mike@shiftleft.org

Sean Turner
sn3rd

Email: sean@sn3rd.com